

Scientific article

UDC 378.147

DOI: 10.24412/2076-9121-2025-4-34-44

HIGHER EDUCATION AND THE GLOBAL CHALLENGES OF THE 21st CENTURY¹

*Valentina B. Salakhova^{1, 2 a}, Ekaterina V. Zvereva^{3, b},
Larisa I. Tararina^{4, 5, c}*

¹ Moscow City University,
Moscow, Russia

² Centre for Security Studies of the Russian Academy of Sciences,
Moscow, Russia

³ Peoples' Friendship University of Russia
named after Patrice Lumumba,
Moscow, Russia

⁴ Moscow Institute of Physics and Technology
(National Research University),
Moscow, Russia

⁵ Russian State Social University,
Moscow, Russia

^a salakhovavb@mgpu.ru, <https://orcid.org/0000-0002-5056-6518>

^b zvereva_ev@pfur.ru, <https://orcid.org/0000-0003-2268-0580>

^c lt31@mail.ru, <https://orcid.org/0000-0002-0280-135X>

Abstract. Modern universities face new challenges driven by rapid digitalisation, the globalisation of higher education, and a paradigm shift within the system. This study addresses current issues in transforming pedagogical approaches within new educational realities, including: rethinking didactic models for blended and online learning environments, integrating artificial intelligence and adaptive educational technologies; developing new pedagogical competencies required for working in digital environments, designing personalised learning pathways, and fostering students' soft skills; the evolving role of the teacher from a knowledge transmitter to a tutor, mentor, and moderator of the educational process; challenges in assessing educational quality given diverse learning formats and the need to establish objective criteria for evaluating pedagogical innovations. The analysis examines contemporary pedagogical concepts, best practices from leading universities, and results from experimental implementations of new educational technologies. Particular attention focuses on the methodological foundations for designing educational programmes that meet the demands of the digital age. The findings offer practical significance for higher education teachers, educational standard developers, and methodologists engaged in modernising the educational process.

Keywords: higher education pedagogy, digital didactics, blended learning, pedagogical innovations, competency-based approach, personalisation of learning, educational technologies

¹ Статья публикуется в авторской редакции.

Научная статья

УДК 378.147

DOI: 10.24412/2076-9121-2025-4-34-44

ВЫСШЕЕ ОБРАЗОВАНИЕ И ГЛОБАЛЬНЫЕ ВЫЗОВЫ XXI ВЕКА

**Валентина Борисовна Салахова^{1, 2, a}, Екатерина Владиславовна Зверева^{3, b},
Лариса Игоревна Тарарина^{4, 5, c}**

¹ Московский городской педагогический университет,
Москва, Россия

² Центр исследования проблем безопасности
Российской академии наук,
Москва, Россия

⁴ Российский университет дружбы народов
им. Патриса Лумумбы,
Москва, Россия

⁴ Московский физико-технический институт
(национальный исследовательский университет),
Москва, Россия

³ Российский государственный социальный университет,
Москва, Россия

^a zvereva_ev@pfur.ru, <https://orcid.org/0000-0003-2268-0580>

^b lt31@mail.ru, <https://orcid.org/0000-0002-0280-135X>

^c lt31@mail.ru, <https://orcid.org/0000-0002-0280-135X>

Аннотация. Современные университеты сталкиваются с новыми вызовами, обусловленными стремительной цифровизацией, глобализацией системы высшего образования и изменением ее парадигмы. В исследовании рассматриваются актуальные проблемы трансформации педагогических подходов в условиях новых образовательных реалий, включая: переосмысление дидактических моделей в контексте смешанного и онлайн-обучения, внедрения искусственного интеллекта и адаптивных образовательных технологий; развитие новых педагогических компетенций, необходимых для работы в цифровой среде, проектирования персонализированных траекторий обучения и формирования гибких навыков у студентов; изменение роли преподавателя — от транслятора знаний к тьютору, наставнику и модератору образовательного процесса; проблемы оценки качества образования в условиях разнообразия форм обучения, необходимости формирования объектививных критерииев эффективности педагогических инноваций. В исследовании анализируются современные педагогические концепции, лучшие практики ведущих университетов и результаты экспериментального внедрения новых образовательных технологий. Особое внимание уделяется методологическим основам проектирования образовательных программ, отвечающих требованиям цифровой эпохи. Результаты исследования могут иметь практическую значимость для преподавателей высшей школы, разработчиков образовательных стандартов и методистов, занимающихся модернизацией учебного процесса.

Ключевые слова: педагогика высшего образования, цифровая дидактика, смешанное обучение, педагогические инновации, компетентностный подход, персонализация обучения, образовательные технологии

For citation: Salakhova, V. B., Zvereva, E. V., & Tararina, L. I. (2025). Higher education and the global challenges of the 21st century. *MCU Journal of Pedagogy and Psychology*, 19(4), 34–44. <https://doi.org/10.24412/2076-9121-2025-4-34-44>

Для цитирования: Салахова, В. Б. Зверева, Е. В., и Тарапина, Л. И. (2025). Высшее образование и глобальные вызовы XXI века. *Вестник МГПУ. Серия «Педагогика и психология»*, 19(4), 34–44. <https://doi.org/10.24412/2076-9121-2025-4-34-44>

Introduction

The higher education system of the 21st century finds itself at a cross-roads, driven by the powerful influence of global trends. The digital revolution, the erasing of geographical boundaries in education, dynamic changes in the labor market, and new social expectations have created a complex set of challenges that require a fundamental transformation of universities as institutions and the educational process itself. The modern university is no longer the sole and exclusive «source of knowledge»; it has evolved into an open, flexible ecosystem that must adapt to change faster than ever before.

The relevance of this study stems from the need for a systemic understanding of the profound changes occurring in higher education pedagogy. Rapid digitalization, accelerated in part by global events such as the COVID-19 pandemic, has brought to the forefront the effectiveness of blended and online learning. The globalization of education is generating international competition, forcing universities to seek their unique advantages and implement best global practices. The educational paradigm is shifting from knowledge-centric to competency-based, emphasizing critical thinking, creativity, collaboration, and adaptation — the so-called soft skills.

The aim of the study is a comprehensive analysis of key areas of higher education transformation in the context of the global challenges of the 21st century, with a focus on changes in didactic models, pedagogical competencies, the role of the teacher, and the quality assessment system.

To achieve this goal, the following tasks were set:

1. To analyze the evolution of didactic models in the context of digitalization, including the introduction of artificial intelligence and adaptive technologies.
2. To explore a new range of pedagogical competencies required for working in a digital educational environment.
3. To characterize the transformation of the role of the teacher in the modern educational process.
4. To identify and systematize the problems of assessing the quality of education in the context of a variety of pedagogical innovations.
5. To summarize methodological approaches to designing educational programs that meet the requirements of the digital age.

The object of this study is the higher education system in the context of global transformation. The subject is pedagogical approaches and educational technologies that ensure the effectiveness of the educational process in this new reality.

The methodological basis of the study consisted of a theoretical analysis of scientific literature, a systematization of pedagogical concepts, an analysis of best practices of leading international and Russian universities, and a summary of the results of the experimental implementation of new educational technologies.

Theoretical analysis

A theoretical analysis of the problem of transforming higher education requires consideration of several interconnected conceptual blocks that form a new educational reality.

1. From classical to digital didactics: the evolution of pedagogical models

The traditional didactic model, based on lectures and seminars and the passive transfer of knowledge from teacher to student, is proving its limitations in the face of information overload. It is being replaced by models focused on student activity, independence, and awareness.

Blended Learning: This model is no longer simply a mechanical combination of in-person and online sessions. The modern understanding of blended learning is a pedagogically sound integration of digital tools and traditional methods, where each element performs its own unique function. The online environment takes over routine operations: content delivery, knowledge testing, automated assignment checking, and organizing forum discussions. In-person time is freed up for interactive formats: project work, debates, case studies, group discussions, and case studies that require direct interaction and the exchange of ideas. The theoretical basis here is active learning theory (Gagné et al., 1992), which emphasizes that knowledge is constructed by the learner through activity.

Digital didactics: This is an emerging field of pedagogical knowledge that studies the patterns and principles of organizing learning in a digital environment. It goes beyond the simple use of digital tools (digitalization) and involves redesigning the entire learning process (digital transformation). Key principles of digital didactics include nonlinearity (the ability to choose a learning path), interactivity, multimedia, adaptability, and learning data. Digital didactics is closely linked to R. Mayer's cognitive theory of multimedia, which proves that people learn better from words and images than from words alone, but only if the learning materials are well designed.

Implementation of Artificial Intelligence (AI) and Adaptive Technologies: AI is fundamentally changing the educational landscape. Adaptive learning systems based on AI can analyze student actions, identify their strengths and weaknesses, and adjust the difficulty and sequence of learning materials in real time. This brings the long-standing pedagogical idea of personalized learning to a whole new technological level. Such systems can offer customized assignments, additional resources to fill gaps, or, conversely, accelerate the progression of topics that students have mastered well. Furthermore, AI is beginning to be used to automate the review of written assignments (essays, papers), generate educational content, and create intelligent chatbots capable of answering student questions 24/7.

2. New paradigm of pedagogical competencies

The transformation of didactic models inevitably entails changes in the requirements for the competencies of higher education teachers. Classical subject knowledge (hard skills) remains the foundation but become insufficient.

Digital Literacy: Teachers must be proficient in not only basic office applications but also specialized educational platforms (LMS — Learning Management Systems, such as Moodle, Canvas, Blackboard), interactive content creation tools (H5P, Learning Apps), videoconferencing, and digital collaboration tools (Miro, Padlet). An understanding of digital ethics and security is also essential.

Instructional Design Competencies: Teachers become architects of educational experiences. They must be able to design courses that effectively combine online and offline activities, develop interaction scenarios, and create or select high-quality multimedia content. This requires knowledge of UX/UI (User Experience / User Interface) principles as they apply to educational products.

Facilitation and Moderation Competencies: In blended and online learning environments, the teacher's role as a discussion moderator and group facilitator becomes crucial. They must be able to engage students in discussions in chats and forums, constructively moderate debates, guide group dynamics productively, and create an inclusive learning environment.

Competencies for soft development Skills: The teacher's job is not only to impart subject-specific knowledge but also to purposefully develop students' critical thinking, creativity, communication skills, teamwork, and emotional intelligence. This requires incorporating specific teaching techniques into the educational process: project-based learning, problem-based learning (PBL), and business games.

3. Transformation of the teacher's role: from translator to navigator

This is perhaps the most profound and psychologically complex aspect of the transformation. The historically established role of the teacher as the primary source

of information and “bearer of truth” is becoming a thing of the past. In an era when any information is accessible with just a few clicks, the value of simply transmitting knowledge is dwindling.

The new role of the teacher is that of tutor, mentor, coach, and moderator. They help students navigate the boundless flow of information, teach them to critically evaluate sources, set academic and professional goals, and build an individual educational trajectory. The teacher becomes the organizer of the educational environment in which students actively construct their knowledge and skills through activity, reflection, and collaboration. This role requires a high level of emotional intelligence, empathy, and a willingness to engage in partnerships, rather than hierarchical relationships, with students.

4. Problems of assessing the quality of education in new conditions

The diversity of forms and methods of education poses complex questions for the system of assessing its quality. Traditional methods, such as standardized exams, are often unable to adequately assess the development of soft skills. skills and competencies acquired through project work or online collaboration.

Authentic Assessment: In response to this challenge, authentic assessment — assessing the performance of real or realistically based tasks — Is becoming more widespread. This includes project defenses, portfolios (both digital and traditional), case competitions, student creation of their own educational products (websites, blogs, apps), peer-to-peer assessment, and self-assessment. This approach allows for the assessment of not only the result but also the process of work and the ability to apply knowledge in complex situations.

Learning Analytics: The digital environment generates a vast array of data on student behavior: time spent in the system; activity on forums; test results; and course trajectory. Learning Analytics is the collection, measurement, analysis, and presentation of this data to understand and optimize learning and the educational environment. Analytics allows for the identification of at-risk students (early warning systems), evaluate the effectiveness of individual course elements and personalize support.

The issue of validity and reliability: New forms of assessment raise questions about their objectivity. How can we ensure consistent criteria when evaluating complex projects? How trustworthy is peer assessment? Developing detailed, transparent, and objective assessment criteria (rubrics) is becoming a critical task for ensuring the quality of the educational process.

Research results

The conducted theoretical analysis allows us to formulate several key results characterizing the current state and development vectors of higher education.

1. Synthesis of pedagogical models as the basis for effectiveness.

The most effective model today is not a purely online or purely in-person model, but a pedagogically sound synthesis of both in a blended learning format. The implementation of such models at leading universities (such as Stanford, the Open University in the UK, and HSE in Russia) demonstrates increased student engagement, improved academic performance, and better preparation for real-world professional work, which is increasingly hybrid in nature. The effectiveness of blended learning directly depends on the quality of pedagogical design, where digital and in-person components do not duplicate each other but rather complement and reinforce each other.

2. Personalization as a systemic trend.

Theoretical analysis confirms that personalized learning is no longer a luxury but has become an expected norm. Adaptive AI-based technologies, although still in the early stages of mass adoption, demonstrate enormous potential for creating truly individualized educational trajectories. This allows us to overcome the key limitation of the classical system — a one-size-fits-all approach to the audience. Experimental results show that adaptive environments reduce attrition rates and increase the speed of learning, as students don't become bored with easy material or flounder with difficult ones.

3. Crystallization of new teaching role models.

An analysis of practices shows that successful teachers in modern universities are those who have embraced and developed the roles of tutor and mentor. Their work is shifting from “lecture-test” to “design-consultation-facilitation-evaluation”. This requires universities to create support systems and continuing professional development (CPD) for teachers aimed at developing these new competencies.

4. Competency-based approach as the core of educational programs.

Theory and practice have firmly established the competency-based approach as the dominant paradigm for designing educational programs. Modern programs are increasingly built not on a set of disciplines, but on the desired graduate profile — a set of specific competencies (both professional and universal). This leads to interdisciplinarity, course integration, an increased share of project-based activities and practical training, and the inclusion of industry experts in teaching.

5. The quality assessment system as a multi-level constructor.

The analysis results indicate that adequate quality assessment in the new environment cannot rely on a single tool. It is necessary to create a comprehensive system that combines:

Traditional assessment to test fundamental knowledge.

Authentic assessment for testing competencies and soft skills skills.

Formative assessment for continuous feedback and trajectory correction during the learning process.

Summative assessment to record the final results.

Learning Analytics for monitoring the process and predicting results.

This comprehensive approach allows us to obtain a comprehensive and objective picture of educational achievements.

6. Methodological foundations for designing educational programs.

Based on an analysis of best practices, key methodological principles for designing programs for the digital age can be identified.

Backward Design: The process begins with defining learning objectives (what competencies a graduate should have), then methods for assessing the achievement of these objectives are designed, and only after that are educational activities and content selected.

Modularity and flexibility: The program should consist of relatively independent modules (micro-courses, credits) that the student can combine to a certain extent, building his or her own trajectory.

Integrating digital and social learning: The curriculum should include not only individual work with content, but also ways for students to interact online and offline (collaborative learning).

Data-Driven Design: Program design and ongoing updates should be based on Learning Analytics data, student and employer feedback.

Conclusion

The study concludes that higher education is undergoing a profound systemic transformation, driven by the global challenges of digitalization, globalization, and a shift in the educational paradigm. This transformation affects every element of the educational system, from fundamental teaching models to the specific roles of participants and assessment tools.

Universities seeking to maintain their relevance and competitiveness in the 21st century are forced to abandon inertial models and actively implement pedagogical innovations. Key development vectors include: the transition to hybrid and blended learning formats, the widespread personalization of educational pathways using AI technologies, and the targeted development of soft skills and re-profiling of teachers as mentors and tutors.

However, the transformation process is fraught with significant challenges. These include academic resistance to change; digital inequality; high costs of developing high-quality digital content and implementing new technologies; and the difficulty of developing objective and reliable assessment systems for new learning formats.

Overcoming these challenges requires a concerted effort from faculty, university administration, methodologists, and educational policymakers. Systematic efforts are needed to improve the digital and pedagogical literacy of faculty, create incentives for innovation, develop new flexible educational standards, and invest in educational technologies.

Ultimately, the success of the transformation will be determined by the ability of the university system to move from a lifelong learning model to a lifelong learning model learning), creating flexible, personalized, and relevant educational products that prepare students not for the past, but for the future.

The global challenges of the 21st century (digitalization, globalization, paradigm shift) have necessitated a fundamental transformation of higher education, shifting the focus from the transmission of knowledge to the development of competencies and soft skills.

A key area of didactic development is the synthesis of traditional and digital approaches within a blended learning model, complemented by adaptive AI-based technologies, which enables the implementation of the principle of personalization.

Effective work in the new educational reality requires teachers to develop a set of new competencies: digital literacy, pedagogical design skills, facilitation and moderation, as well as the ability to purposefully develop soft students' skills.

There is a systemic transformation of the teacher's role from that of information transmitter to tutor, mentor, and architect of the educational environment, which requires changes in the system of training and support for faculty.

Assessing the quality of education in an innovative environment must be comprehensive and combine traditional methods with authentic assessment, formative feedback, and learning analytics.

The methodological basis for designing competitive educational programs is the principles of reverse engineering, modularity, integration of digital and social learning formats, and data orientation.

The further successful development of higher education is possible only if institutional and personnel barriers to innovation are overcome and a flexible, student-centred educational ecosystem is built.

References

1. Andreev, A. A. (2020). *Pedagogy of higher education. New course*. Moscow: MESI. (In Russ.).
2. Bosova, L. L., & Savyelyeva, O. A. (2021). *Digital Didactics: Theory and Practice*. St. Petersburg: Piter. (In Russ.).
3. Gardner, G. (2019). *The structure of mind: the theory of multiple intelligences*. Moscow: Alpina Publisher. (In Russ.).
4. Gagné, R., Briggs, L., & Wager, W. (1992). *Principles of Instructional Design*. 4th ed. Fort Worth. TX: HBJ College Publishers.
5. Mayer, R. E. (2020). *Multimedia Learning*. 3rd ed. Cambridge University Press.
6. Robert, I. V. et al. (2022). Modern Educational Technology: A Systematic Review. *Journal of Educational Technology & Society*, 25(1), 45–58.
7. Bates, A. W. (2022). *Teaching in a Digital Age: Guidelines for Designing Teaching and Learning*. 3rd ed. BC campus.
8. Bonk, C. J., & Graham, C. R. (2021). *The Handbook of Blended Learning: Global Perspectives, Local Designs*. Pfeiffer.

9. Siemens, G. (2020). Learning Analytics: The Emergence of a Discipline. *American Behavioral Scientist*, 64(7), 901–920.
10. Fullan, M., & Langworthy, M. (2021). *A Rich Seam: How New Pedagogies Find Deep Learning*. Pearson.
11. Zimnyaya, I. A. (2019). Key competencies — a new paradigm of educational outcomes. *Higher education today*, 5, 34–42. (In Russ.).
12. Hattie, J. (2023). *Visible Learning for Teachers: Maximizing Impact on Learning*. Routledge.
13. Wiggins, G., & McTighe, J. (2021). *Understanding by Design*. 2nd ed. ASCD.
14. Dede, C. (2022). *The Role of Digital Technologies in Deeper Learning*. Harvard Education Press.
15. Patarakin, E. D. (2020). *Network communities and learning*. Moscow: LENAND. (In Russ.).
16. European Commission, EACEA, Eurydice (2022). *The European Higher Education Area in 2022: Bologna Process Implementation Report*. Luxembourg: Publications Office of the European Union.

Список источников

1. Андреев, А. А. (2020). *Педагогика высшей школы. Новый курс*. Москва: МЭСИ.
2. Босова, Л. Л., и Савельева, О. А. (2021). *Цифровая дидактика: теория и практика*. Санкт-Петербург: Питер.
3. Гарднер, Г. (2019). *Структура разума: теория множественного интеллекта*. Москва: Альпина Паблишер.
4. Gagne, R., Briggs, L., & Wager, W. (1992). *Principles of Instructional Design*. 4th ed.). Fort Worth. TX: HBJ College Publishers.
5. Mayer, R. E. (2020). *Multimedia Learning*. 3rd ed. Cambridge University Press.
6. Robert, I. V. et al. (2022). Modern Educational Technology: A Systematic Review. *Journal of Educational Technology & Society*, 25(1), 45–58.
7. Bates, A. W. (2022). *Teaching in a Digital Age: Guidelines for Designing Teaching and Learning*. 3rd ed. BC campus.
8. Bonk, C. J., & Graham, C. R. (2021). *The Handbook of Blended Learning: Global Perspectives, Local Designs*. Pfeiffer.
9. Siemens, G. (2020). Learning Analytics: The Emergence of a Discipline. *American Behavioral Scientist*, 64(7), 901–920.
10. Fullan, M., & Langworthy, M. (2021). *A Rich Seam: How New Pedagogies Find Deep Learning*. Pearson.
11. Зимняя, И. А. (2019). Ключевые компетенции — новая парадигма результата образования. *Высшее образование сегодня*, 5, 34–42.
12. Hattie, J. (2023). *Visible Learning for Teachers: Maximizing Impact on Learning*. Routledge.
13. Wiggins, G., & McTighe, J. (2021). *Understanding by Design*. 2nd ed. ASCD.
14. Dede, C. (2022). *The Role of Digital Technologies in Deeper Learning*. Harvard Education Press.
15. Патаракин, Е. Д. (2020). *Сетевые сообщества и обучение*. Москва: ЛЕНАНД.
16. European Commission, EACEA, Eurydice (2022). *The European Higher Education Area in 2022: Bologna Process Implementation Report*. Luxembourg: Publications Office of the European Union.

Статья поступила в редакцию: 18.02.2025; The article was submitted: 18.02.2025;
одобрена после рецензирования: 22.08.2025; approved after reviewing: 22.08.2025;
принята к публикации: 15.06.2025. accepted for publication: 15.06.2025.

Информация об авторах / Information about the authors

Валентина Борисовна Салахова — кандидат психологических наук, ведущий научный сотрудник Научно-исследовательского центра аналитических исследований и моделирования в образовании Научно-исследовательского института урбанистики и глобального образования Московского городского педагогического университета; ведущий научный сотрудник Центра исследования проблем безопасности Российской академии наук, Москва, Россия.

Valentina B. Salakhova — PhD in Psychology, Leading Researcher, Centre for Analytical Research and Modeling in Education, Research Institute of Urban Studies and Global Education, Moscow City University; Leading Researcher, Centre for Security Studies of the Russian Academy of Sciences, Moscow, Russia.

salakhovavb@mgpu.ru , <https://orcid.org/0000-0002-5056-6518>

Екатерина Владиславовна Зверева — кандидат филологических наук, доцент кафедры иностранных языков, Юридический институт, Российский университет дружбы народов имени Патриса Лумумбы, Москва, Россия.

Ekaterina V. Zvereva — PhD in Philology, Associate Professor Department of Foreign Languages, Law Institute, Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia.

zvereva_ev@pfur.ru, <https://orcid.org/0000-0003-2268-0580>

Лариса Игоревна Тарапина — кандидат педагогических наук, доцент департамента иностранных языков Московского физико-технического института (национальный исследовательский университет), Москва, Россия; доцент кафедры иностранных языков и культуры Российской государственной социальной академии, Москва, Россия.

Larisa I. Tararina — PhD in Education, Associate Professor, Department of Foreign Languages, Moscow Institute of Physics and Technology (National Research University), Russian State Social University, Moscow, Russia, Associate Professor, Department of Foreign Languages and Culture, Russian State Social University, Moscow, Russia.

lt31@mail.ru, <https://orcid.org/0000-0002-0280-135X>

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.